IWS_4

Topic: Research of the systems on stability by the second (direct) method of Lyapunov

Task Investigate for stability by the second (direct) method of Lyapunov the linearized (linear) ACS which description is set in the state-space (lower by variants); Lyapunov's function is set the following look:

$$V(x) = \frac{1}{2}(x_1^2 + x_2^2).$$

Define conditions asymptotically of the steady movement of a system on Lyapunov; give geometrical interpretation.

Variants:

1)
$$\begin{cases} \overset{\bullet}{\chi}_{1} = 4x_{1} - 6x_{2} \\ \overset{\bullet}{\chi}_{2} = 3x_{1} + x_{2} \end{cases}$$
.

2)
$$\begin{cases} \mathbf{x}_1 = 5x_1 - 5x_2 \\ \mathbf{x}_2 = 7x_1 + 8x_2 \end{cases}$$
.

3)
$$\begin{cases} \overset{\bullet}{x}_1 = 2x_1 + 5x_2 \\ \overset{\bullet}{x}_2 = -10x_1 + 5x_2 \end{cases}$$
.

4)
$$\begin{cases} \mathbf{x}_{1} = 4x_{1} - 3x_{2} \\ \mathbf{x}_{2} = -3x_{1} + 4x_{2} \end{cases}$$
.

5)
$$\begin{cases} \mathbf{x}_{1} = 2x_{1} - x_{2} \\ \mathbf{x}_{2} = x_{1} + 3x_{2} \end{cases}$$
.

6)
$$\begin{cases} \mathbf{x}_{1} = 10x_{1} + 5x_{2} \\ \mathbf{x}_{2} = 5x_{1} + 7x_{2} \end{cases}$$

7)
$$\begin{cases} \mathbf{x}_{1} = 4x_{1} - 3x_{2} \\ \mathbf{x}_{2} = 6x_{1} + 2x_{2} \end{cases}$$
 8)

8)
$$\begin{cases} \overset{\bullet}{\chi}_{1} = 5x_{1} - 4x_{2} \\ \overset{\bullet}{\chi}_{2} = -8x_{1} + 2x_{2} \end{cases}$$
.

9)
$$\begin{cases} \overset{\bullet}{\chi}_{1} = 2x_{1} - 5x_{2} \\ \overset{\bullet}{\chi}_{2} = 4x_{1} + 9x_{2} \end{cases}$$
.

10)
$$\begin{cases} \dot{x}_1 = 6x_1 + 2x_2 \\ \dot{x}_2 = -5x_1 + 8x_2 \end{cases}$$
.

11)
$$\begin{cases} \overset{\bullet}{\chi}_{1} = 4x_{1} - 3x_{2} \\ \overset{\bullet}{\chi}_{2} = -5x_{1} + 6x_{2} \end{cases}$$
.